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Abstract: 

The design of a protection system for an oper- 
ating system is seen to involve satisfying the com- 
peting properties of richness and integrity. 

Achieving both requires the interplay of analysis 
and synthesis. Using a formal model from the lit- 
erature, three designs are developed whose integ- 
rity (with the help of the model) can be shown. 

I. Introduction 

In an enumeration of the many properties that 
a protection system should have, two distinguish 
themselves as being especially important: 

richness - the property of admitting a com- 
plex variety of sharing relation- 
ships, 

integrity - the property of guaranteeing that 

the protection system cannot be 
compromised even in the most 
hazardous of circumstances. 

Both properties are crucial - a rich system with 
dubious integrity is just as unacceptable as a 

system of unassailable integrity with only meager 
sharing facilities. 

The task of achieving both richness and in- 
tegrity in a protection system is difficult be- 
cause the two properties are contradictory. For 

every feature, restriction, exception, etc., added 
to achieve richness during the synthesis phase of 
design, a complication is usually introduced into 

the analysis phase of validation. Traditionally, 
there seems to have been too much emphasis on syn- 
thesis at the expense of analysis. This partly 

explains why clever systems are so often compro- 
mised. It is one purpose of this report to demon- 
strate that richness and integrity can be achieved 

by allowing the analysis to guide the synthesis. 
That analysis should play a leadership role 

may at first seem curious, since to have anything 
to analyze something must first have been synthe- 

sized. But this is the ad hoc view of the problem 
- where each completed design is analyzed separ- 
ately, from scratch and without the benefit of 
general guiding principles. What is being pro- 
posed here is a more general view -- where analy- 
sis establishes general properties of a whole 

class of designs based on a formal model of pro- 
tection while synthesis amounts to selecting among 
the designs. This view will be exhibited by per- 

forming both analysis and synthesis on the Take- 
Grant Model [1,2]. Specifically, the analysis 
(started in [1,2]) will be extended to establish 

new, stronger conditions on when sharing can be 
performed. Then three designs will be selected 
in order to exhibit the synthesis activity. 

A second objective of this report is to dem- 
onstrate that a particular Model, the Take-Grant 

Model [1,2], is a suitable model of capability 
protection in that it admits designs that have 
both richness and integrity. Most of the work to 

establish integrity appears elsewhere [1,2] and 
will only be mentioned here. It is not obvious 
that the Take-Grant system has richness -- indeed, 
from the earlier papers [1,2] one might conclude 
that it is impoverished. It will be shown (sec- 

tion 4) that the Take-Grant system has rich in- 
stances. 

The remainder of the paper is structured as 

follows: section 2 gives an introduction to the 
Take-Grant Model that parallels earlier work 
(and can be skipped by those familiar with [1,2]). 

Section 3 discusses the apparent short-comings of 
the Take-Grant model and establishes a new condi- 
tion for sharing. Section 4 presents three dif- 

ferent protection system designs -- each with a 
different cost assumption -- in order to exhibit 
the synthesis of rich systems. The final section 
is reserved for discussion and suggestions for 
future research. 

2. Graphical Model of the Take-Grant System 

In this section the Take-Grant protection 
model of [i] is described (with some minor modi- 
fications*). In order to focus on the role that 
the model plays in synthesizing and analyzing pro- 

tection systems, the Take-Grant model will be ini- 
tially presented in purely formal (though quite 
intuitive) terms. The interpretation as a pro- 

tection model will be postponed until section 2.3. 

2.1 Constituents of the Take-Grant Model 

The state of a Take-Grant Protection system 
is a finite, directed, edge labeled graph called 
a protection graph. There are two types of ver- 

tices in the protection graph, subjects and ob- 
jects. (Notationally, filled circles, e, will 

For those familiar with the earlier version of 
the model, "t" and "g" labels are used instead 
of "r" and "w", respectively. The "call" op- 

eration has been dropped from consideration 
and "remove" has been weakened. None of these 
changes substantially effects the earlier work. 

This work was supported in part by Office of Naval 
Research Grant N00014-75-C-0752. 
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denote subjects, unfilled circles, o, will denote 

objects, and crossed circles, ®, will denote 
either subjects or objects.) The labels on the 

edges are called rights and are either {t}, {g}, 

{t,g} where "t" and "g" are mnemonic for "take" 
and "grant."% 

Example 2.1: 

tg! 
O 

A protection graph with three 

subjects and three objects. 

t g 
>~ >o 

>O 
g 

A protection graph G is modified to G' by 

means of rewriting rules. Rules have the form 

=> B. When ~ matches some subgraph of G, the 
rule can be applied to G, producing a new graph 

G' ( the operation of applying a rule r is written 
G~--- G') . 

r 
There are four rewriting rules in the Take- 

Grant Model: 

Take: Let x, y, and z be three distinct vertices 
in a protection graph G such that x is a 

subject. Let there be an edge from x to y 

labeled y such that "t" £ y, and an edge 
from y to z labeled a.%% Then the take rule 

defines a new graph G' by adding an edge to 

the protection graph from x to z labeled ~. 
Graphically, 

x y z x y z 

The rule can be read: 

from y." 

"x takes (~ to z) 

Grant: 

Create : 

Let x, y, and z be three distinct vertices 
in a protection graph G such that x is a 

subject. Let there be an edge from x to y 

labeled 7 such that "g" £ 7, and an edge 
from x to z labeled ~. The grant rule de- 
fines a new graph G' by adding an edge from 

y to z labeled u. Graphically, 

ct 

x y z x y z 

The rule can be read: "x grants (s to z) 

to y." 

Let x be any subject vertex in a protec- 
tion graph G and let u be a subset of 

rights. Create defines a new graph G' by 

adding a new vertex n to the graph and an 
edge from x to n labeled u. Graphically, 

• ~ ~ >® 
x x n 

The rule can be read: "x creates (~ to) 
;subjectl n.- 

new "object " 

% 
We will generally elide the braces around sets. 

%%In the rules, s is a variable representing any 
of the three possible labels, t, g, and tg. 

Remove: Let x and y be any distinct vertices in a 

protection graph G such that x is a sub- 
ject. Let there be an edge from x to y 

labeled y, and let ~ be any subset of 

rights. Then remove defines a new graph 
G' by deleting the e labels from y. If 

becomes empty as a result, the edge 

itself is deleted. Graphically, 

• Y-s >® >® 
x y x y 

The rule can be read: "x removes (@ to) 
y. - 

Notice that in the case of take and grant if the 

edge which is to be added already exists, the label 

is simply unioned with the label presently as- 
signed to the edge. 

Example 2.2: Let G be the protection graph 

Y 
>o iI >oz 

tg t 

w 

then the four rules can be exhibited* as 

follows: 

~ ~ t 

/ Y 

xl I >o 
G Itak e tg t 

g 

w 

x takes (t to z) from y; 

~'~ z 
>o 

y 
x 

G  rant [ tg i t 

x grants (tg to y) to w; 

>e z 

Y 
x >o >o z 

G ~ I tg t cre ate \ 

g ~ 

• g ~'~O 
W n 

x creates (g to) new object n; 

The dashed lines have no special meaning, they 

are only a visual aid to indicate the added 
edge. 
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Y 
G ~ x tg >0 t >ez 

remove 

w 

x removes (g to) w. 

2.2 Properties of Protection Graphs 

The primitive facilities provided by the model 
are uncomplicated, but their interactions are un- 

expectedly complex. Accordingly, the analysis of 
the model will be accomplished in two steps. First 
to be presented is a statement of the sharing rela- 

tionships realizable in graphs containing only sub- 
jects (2.2.1). Then, the sharing relationships 
realizable in a general graph can be stated in 

terms of "subject islands" (2.2.2). 

2.2.1 Acguiring Rights in Subfiect-Onl~ Graphs 

Two vertices, p and q, are said to be connec- 
ted if there is a path between them without regard 

to directionality. The vertices p and q are sub- 
ject-connected if they are connected by a path 
whose vertices are only subjects. If ~ is a label 

and p and q are vertices in a protection graph G O 

then p can a q means that there exists a sequence 

of graphs G0'Gi'''''Gn each derived from its pred- 

ecessor by one of the four rules (i.e., 

G0~- GI~- G2 ~- ... ~Gn ) and in Gn there is an 

edge from p to q with label a. 

Theorem 2.1: [2] Let p, q and r be subject ver- 
tices in a protection graph such that there is an 
edge from r to q labeled e. Then p can ~ q if p 
and q are subject-connected. 

The proof of (a somewhat stronger version of) 
this theorem is given in [~. The theorem can very 

easily be misinterpreted, so any discussion of the 
result is postponed to the next section. For the 

present, an example may help to suggest some of the 

unexpected consequences of the theorem. 

u v u 
P~ >I< ~< ~q~-P~ >o< 

t g tg ~ t 
t 

r 

r creates (tg to) new subject n 

u v 
P~ >O< 

t g tg 

r grants (t to q) to n 

u 

P~ >o< 
t g 

n takes (tg to v) from q 

v 
e< -q 

g tg I t  
O< . . . . .  

n tg r 

~< -q 

///I 
/ t / 

// 

n tg r 

v 
_q 

hl Ir 
n tg r 

P= 
u v 

_~ Aq 
>~ g . . . .  

~-~ t 
g ~ tg 

n tg r 

n takes (g to u) from v 

u / v ~q 

- ~ g tg " 

n tg r 

n grants (t to q) to u 

/ 
/ 

/ 
/ 

P/ 
t 

~ t 

t _ ~\ 

tg 

n tg r 

p takes (t to q) from u. 

2.2.2 Acquiring Rights for the Subject-Object 
Case 

Complex as the example from the last section 
may appear, it only involves subjects -- the easy 

case! Objects create further complications to be 
dealt with in this section. (This section may be 
skipped on the first reading.) 

A block in a protection graph G is any max- 
imal subject-connected subgraph. Let p and q be 

subjects and Xl,...,Xn (n _> i) be objects such 

that 

(2.1) p directly connected to x 1 

x. directly connected to xi+ 1 1 -< i _< n-i 
l 

x directly connected to q, 
n 

then P,Xl,X2,...,Xn 'q is a path. With each such 

path associate a word over the alphabet 

where letters correspond to edge labels in the ob- 

t 
vlous way, e.g., o >0 is represented by 
+ t t g tg 
t, and c~ >0 .. >0< 0 >o is a path 

associated with the two words ~ ~ ~ ~ and ~ ~ ~ ~. 
Let E be the union of the regular languages 

defined by 

(2.2) t(t) 
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+*+4-+ 
(t) g (t) 
-~- *4-4- + 
(t) g(t) 
+ +-~ 4- * 
(t) g (t) 
+++4-* 
(t) g(t) 

where A + AA* = for any set A. A bridge between 
two blocks exists if from some subject p in one 
block there is a path with associated word in E 
to subject q in the other block. 

Theorem 2.2: [i] Let G be a protection graph, p, q 
and r subjects such that there is an edge from r to 
q with label u. Then p can e q if and only if the 
there exists a sequence of blocks Bi,... ,B k with p 

in B 1 and q in B k and for i=l,...,k-i there is a 

bridge from B i to Bi+ I. 

The proof of this theorem is also found in 
[i]. Notice that if the protection graph only con- 
tains subjects (and thus k=l), then Theorem 2.2 
strengthens Theorem 2.1 to be "if and only if." 

Example 2.4: Let a protection graph G have 
the schematic form of figure 2.1, where A and 

~ ~ ~  tx ~ ~ t  t 

A B 

Figure 2.1: A protection graph with two 
blocks, A and B. 

B are blocks, i.e., maximal subject-connected 
subgraphs. A path between p and q is shown, 
and since its associated word is in the "last" 

component set of E, (i.e., ~ ~ ~ g ~ E 

(t) ), the path is a bridge. By the 
theorem, p can t q as the following rule ap- 
plications indicate: 

p: t >O t >O t >O< 9 ~<I~ -< ~_r 

x I x 2 x 3 x 4 q 

r takes (t to x4) from q 

p= t >O t >o t 
x I x 2 

g 

x 3 x 4 q 

r takes (g to x 3) from x 4 

v t >O t >O t 
x I x 2 

g t .... 

t 

r grants (t to q) to x 3 

p~>Oxl t ~>~x2 t r 

p takes (t to x 2) from x I 

p takes (t to x 3) from x 2 

p takes (t to q) from x 3. [3 

2.3 Interpretation of the Take-Grant Model 

So far in this section, the only indication 
that the Take-Grant model is intended for use in 
studying protection has been some suggestive vocab- 
ulary. The objective now is to relate the graph- 
theoretic development to protection. 

It is assumed that the protection system 
(which is to be modeled by the Take-Grant model) 
is a logically separate entity from the operating 
system "supervisor" (and thus the supervisor is 
subject to its limitations like any other pro- 
cess.)* In particular, the independence of the 
protection system allows the user to query the 
system himself for an audit to verify that certain 
protection conditions hold. The protection graph 
is a description of the currently extant protec- 
tion relationships. Thus, the protection relation- 
ships among systems entities can be changed only 
by the four rules. The subjects are generally 
thought to be "user processes" or components that 
are "active" from a protection point of view, 
while the objects are thought of as files or pro- 
cesses "known" to be secure. When a subject 
"applies" a rule (notice that only subjects can 
"apply" the rules) it is requesting a modification 
of the protection state. Take causes a user to 
acquire a new right over some systems entity 
while grant gives some right away. Create enables 
new processes and files to have their protection 
configuration added to the system structure while 
remove eliminates rights. 

There are several important characteristics 
that should be noted about the rules of the model. 

(2.3) a. Take and grant do not create any new 
rights -- they merely disseminate 
existing rights. 

b. Once all rights to a subject or object 
have been removed they can never be 
restored. 

Here operating system is the totality of the 
non-user programs while "supervisor" refers to 
the monitor program. 
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c. Rights once granted away can never be 
recovered, i.e., they can be distri- 

buted by the grantee without consulta- 
tion with the grantor. 

Finally, it is significant that it can be ef- 
ficiently determined whether or not p can a q. In 

contrast to [3] where the "safety question" is 
either undecidable or prohibitively expensive, 
there is a linear time algorithm to decide if 
p can a q [i], i.e., to determine if the conditions 
of Theorem 2.2 are satisfied. Thus audits can be 

efficiently performed. 

3. Evaluation of the Take-Grant Model 

In the last section the Take-Grant model was 
introduced in purely formal terms and the constit- 

uent parts of the model were correlated with pro- 
tection systems components (e.g., subject vertices 

represent user processes). What has not been done 

is to interpret the theorems from the protection 
viewpoint. That is the first undertaking of this 

section. After that, we discuss why the model ap- 

pears to provide such meager facilities. Finally, 
conditions are set forth that permit richer sharing 
relationships. 

3.1 What Does the Take-Grant Model Allow? 

Consider the protection state schematically 
shown in figure 3.1 where the region represents 
the totality of all subjects and objects. Sub- 

Figure 3.1: Schematic Protection State 

jects A and B are to be thought of as users while 

objects w, x, y, and z are thought of as their 
private files. 

Given the following list of objectives, The- 

orem 2.2 can be used* to specify the needed re- 
quirements to achieve these objectives and to in- 
fer the potential consequences. 

(3.1) A wants to prevent any subject from get- 
ting rights to w. In order to achieve 

this, A either must not be connected to 
any subject or else if it is connected it 
must be connected by a path with associ- 

ated word not in E. One consequence of 
such a relationship is that A cannot share 
with anyone else if it is so isolated. 

Apparently, protection prevents sharing. 

Our use of Theorem 2.2 in (3.1-3.3) requires that 
the letter "q" in the statement of the theorem 

correspond to a file, however, it is required by 

the theorem that "q" be a subject. So, as stated 
Theorem 2.2 does not apply. The reader can 

easily prove, however, that "q" may be either a 
subject or an object in the theorem, and hence 
our conclusions here are valid. 

(3.2) A wants to have access to B's file y. A 

must be subject-connected to B (or connec- 

ted by a path with associated word in E). 
If A and B are so connected then B can ac- 

quire rights to A's files w and x. It 
seems that sharing forfeits protection. 

(3.3) A wants to share its file w with B and 

also to prevent B (or any other subject) 
from acquiring rights to x. If B can tg 

w then B can tg x. Thus, the only way 
that A can protect x is to remove its 

rights to x. But by observation (2.3b) 

A can never reacquire the rights to x! It 
appears as though rights cannot be selec- 

tively protected. 

3.2 A Postmortem 

Theorem 2.2 provides an exact characteriza- 

tion as to when a subject can acquire a right in 
the Take-Grant Model. When the characterization 

is applied to solve some typical protection prob- 

lems (3.1-3.3), however, the model appears to be 
disappointingly weak. But appearances can be de- 

ceiving. So, before dismissing the model as ana- 

lyzable but so poorly endowed with sharing facil- 
ities as to be useless, it is prudent to review 

the model and theorem checking that each feature 

is realistic and correct. 
Our review has exposed two characteristics of 

the model worthy of revision -- the reader may 

discover others. In particular, the model per- 
mits two parameters to vary arbitrarily which in 

reality are far more constrained. Moreover, we 
will find that constraining these parameters en- 

riches the model. 

The first parameter that is underconstrained 
is the protection graph G in Theorem 2.2. Recall 

from section 2.2.2 that the Theorem states: 

"Let G be a protection graph .... " 

This permits the protection configuration to be 

chosen arbitrarily. But in reality, the protec- 
tion state of an operating system, which the graph 

G is supposed to model, will probably be derived 
from a specific initial state by a certain set of 
sharing protocols. For example, the protection 

state at system initialization time may only in- 
clude the supervisor (probably a subject) and 
some service files and routines (probably objects) 

that the supervisor has tg rights to. Further- 
more, the supervisor is likely to create new users 

(new subjects) by means of a fixed protocol, the 

compilers and editor will create files by fixed 
protocols, etc. Hence, the protection state 

will not be an arbitrary graph even if a particu- 

lar user is permitted unlimited freedom to apply 
protection rules. (Section 4 is devoted to formu- 

lating a useful set of creation and sharing proto- 
cols.) 

The second, and in our opinion the most im- 
portant, underconstrained parameter of the model 

is found in the definition of p can ~ q. Recall 

(section 2.2.1) that p can a q means that 

there exists a sequence of graphs 

G0,Gi,...,G n each derived from its 

predecessor by one of the four rules 

and in G there is an edge from p to q 
n 

with label ~. 

An example will help to distinguis h between the 
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provisions of this definition and the requirements 

of statements such as (3.1-3.3). Consider the 
graphs 

(3.4) e t ~ t , ~ g ~  
p s "~ r 

and 

t ,A t ~, g 

(3.5) P s ~ r 

In both cases p can g q, since in (3.4) 

(3.6) p takes (t to r) from s 

p takes (g to q) from r 

is all that is required and in (3.5) the sequence 

(3.7) r creates (tg to) subject n 
r grants (g to q) to n 

r grants (t to n) to q 

p takes (t to q) from s 
p takes (t to n) from q 

p takes (g to q) from n 

defines the appropriate graph. 

Let us call a subject an initiator of a rule 

if that subject corresponds to the vertex "x" in 
the rule definition of section 2.1. Thus, in the 

second example r initiates the first three rules 
and p initiates the second three. 

The notable distinction between (3.6) and 

(3.7) (besides length) is that r is not an initia- 
tor in (3.6) but it is in (3.7). Now, suppose r 
wishes to protect the g right to q. In (3.4) it 

cannot prevent p from acquiring the right since p 
can initiate the needed action without r's assis- 
tance. But in (3.5) if r never initiates a rule 

then no matter what rules p, q, and s initiate, p 

can never acquire the g right to q. The conclusion 

is that p can be given g to q in either case; p can 

steal g to q in only the first case (3.4). 
The distinction, then, is between the possi- 

bility of a right being given away and the possi- 

bility of a right being stolen. Theorem 2.2 only 
addresses giving rights assuming everyone to be in- 

finitely generous. Since it seems realistic to 

assume that users will not "knowingly"* give away 
what they wish to protect, a right that cannot be 

stolen is protected. In the last part of this sec- 

tion a theorem similar to Theorem 2.2 details the 
conditions under which p can steal e to q. 

3.3 Stealing in the Take-Grant Model 

The distinction to be made is between the 
case where p must acquire a right with the assis- 

tance of one of the "owners" of the right and the 

case where p is able to acquire that right without 
any owner's assistance. If the latter case applies 

p will be able to "steal" the right. 

More precisely,@ let G be a protection graph, 

The word "knowingly" is used here only in the 
limited sense that by requesting an audit, the 
user can find (and thus "know") whether the ini- 

tiation of a particular rule will materially con- 
tribute to a theft. 

The notation p-u-~q (resp. p / ~+q) in G means 
that there is (resp., is not) an edge in G from 
p to q labeled ~. The "in G" will be elided 
when it is clear from context. 

p, q be subjects and e a label such that p / ~÷q in 
G. Then p can steal ~ to q in G if there exists a 
sequence of graphs 

I 2 G2 r 3 

such that 

(i) p-u-~q in G 
n 

and 

"'" ~r Gn 
n 

(ii) for all i, x. initiates rule r. implies 
1 1 

x. / cc~q in G. 
l 

Thus, p can steal ~ to q if it doesn't already 
have ~ rights to q, if p can ~ q (i) and if it 
can do so without any owner of the e right to q 

initiating any rules, i.e., cooperating with the 
dissemination of its right. The intuition we seek 
is if p can e q but p cannot steal ~ to q then the 

right to q must necessarily be protected and p 
can only acquire it as a gift. 

The circumstances under which rights can be 

stolen may now be characterized.* 

Theorem 3.1: Let G be a protection graph, p, q 

are subjects and ~ is an edge label. Then p can 
steal e to q if and only if 

(i) p can ~ q 

and 

(ii) there exist subjects r and s such that 
s-t+r and r-c~q. 

Proof: (=>) Suppose p can steal ~ to q, then by 
definition of "can steal," p can ~ q, so condition 

(i) is satisfied. Moreover, by definition of 

p can e q, there is some r such that r-0~q. So 
suppose (for purposes of contradiction) that for 

all r such that r-~+q that there is no s such that 
s- t+r. 

Let G~rl Gl~r2 ...~ Gn be e sequence that 
n 

implements p can steal u to q. Let i be the smal- 
lest integer such that some vertex w receives the 

right to q (i.e., this is the first graph in 
which the ~ right to q is disseminated -- this 

exists by definition of "can steal"). Thus, in 

Gi_ 1 the situation is 

w r q 

and in G. the situation is 
l 

w r q 

By examining the rules, it is clear that r. is 
l 

either "take" and w corresponds to "x" in the rule 
definition, or "grant" and r corresponds to "x" in 

As usual, we treat only the case where the 

"agents" of the theorem are subjects. The cases 
where some nonempty subset of p, q, r and s are 
objects has not been addressed. 
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the rule definition. The second case is elimi- 
nated since r is the initiatOr which isn't allowed 
in a "steal." So r. must be a take initiated by w 

1 

and hence w must have take rights to r. By Theo- 
rem 2.2, however, for w to get t rights to r, some 

subject must have t rights to r, contradicting the 
assumption. 

(<=) Suppose that p can ~ q, s-t+r and r-~q. 

If p can ~ q without r initiating a rule, then 
the theorem is proved. So suppose that p can e q 

and r initiates some rules. We construct a sur- 

rogate subject, a new subject n, identical to r. 
Then the sequence of rule applications implemen- 

ting p can e q can be rewritten with n replacing 

all occurrences of r. 

The process to be defined will begin with a 

graph such as that schematically shown in figure 
3.2 and will produce the graph schematically 

shown in figure 3.3. 

u 1 

S Oq 

\o 2 
u 2 u 3 

Figure 3.2: Given configuration. 

Step i. 

Step 2. 

Step 3. 

Case 

-CJ- - 

/ i@'~ 81 \ 
, 

s ~ > ~ > . < -  -~- ~ n 

u 2 u 3 

Figure 3.3 ; Constructed configuration. 

(Create surrogate) 

s creates (tg to) new subject n 

V r- 8 l÷Ul 

(Give surrogate 81 type edge) 

s takes (81 to u I) from r 

s grants (81 to Ul) to n 

(Give surrogate 82 type edges) 

a. 8 2 = g 

u 2 creates (tg to) new subject n' 

U 2 grants (g to n') to r 

s takes (g to n') from r 

s grants (g to n) to n' 

u 2 takes (g to n) from n' 

Case 

Case 

b. 82 = t ^ ~ = t 

q creates (tg to) new subject n' 

u 2 takes (t to q) from r 

u 2 takes (t to n') to q 

s takes (t to q) from r 
s takes (g to n') from q 
s grants (t to n) to n' 

u 2 takes (t to n) from n' 

c. ~2 = t ^ ~ = g 

u 2 creates (tg to) new subject n' 

u 2 takes (g to q) from r 

U 2 grants (g to n') to q 

s takes (g to q) from r 
s grants (t to n) to q 

q grants (t to n) to n' 

u 2 takes (t to n) from n' 

Step 4. (Give surrogate 83 type edges) 

By Theorem 2.2, the only way that ob- 

jects such as u 3 can participate in 

"p can e q" transformation is if they 

have associated word in E (see section 
2.2.2). Let v be a subject such that 

there is a path from v to r with assoc- 

iated word w in E. Then 
++ + 

(i) w £ t(t) 
+ +++ * 

or (ii) w E (t) g(t) 

and in the second case the "starred" set 
is empty. Thus, v can,by a sequence of 

"takes~' get either v-t+r (i) or 

v-g+r (ii) and we apply step 3, where now 

u 2 = v. 

Since the conditions characterizing p can e q 
can be checked in linear time, an inm~ediate con- 

sequence of the theorem is: 

Corollary 3.2: There is a linear time algorithm 

to decide if p can steal e to q. 

4. The Synthesis of the Take-Grant Systems 

The analysis of the model is now completed 
and it is time to "synthesize" some systems. As 

indicated in the introduction, our view of the 

synthesis activity is that of the selection of a 
particular subset of protection states definable 

in the model. The subset will include the protec- 

tion configurations achievable in a particular 
system. The analysis enables us to make an in- 

formed choice as to which configurations to in- 
clude and which to exclude, i.e., we can determine 
what sharing can be achieved. This selection pro- 

cess is exhibited by specification of initial con- 
figurations (4.1) and by three protection systems 

designs (4.2-4.4). The designs represent only a 
sampling of the potential protection structures. 

They have been selected to illustrate how the 

model can be used to achieve goals in addition to 
simple security -- in this case achieving effi- 

ciency by balancing the number of users sharing 
against the total amount of sharing taking place. 

It may be helpful before presenting the 
designs to underscore the distinction between a 

model and a design. A model provides a means of 
specifying protection system states, a means of 
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specifying state changes, and a means of stating 
and proving theorems about these states and state 
changes. The model does not provide a design. A 
"design" of a protection system -- the structures 
and operations that the program must effect -- 
will be embodied in the assumptions made in the 

model. Thus, a design only exists implicitly in 
the present development. Making it explicit re- 
quires writing system specifications that realize 
and/or enforce the assumptions. Thus, a designer 
must first formulate a suitable abstract model of 
protection, such as the Take-Grant Model, and then 

convert the assumptions of the model into explicit 
specifications. 

4.1 Initial State and User Processes 

As indicated in the last section, the opera- 
ting system supervisor is distinct from the pro- 
tection system and is thus treated just like any 
other subject in the system. Of course, it does 

have a special role of joining new users to the 
system, managing library programs, etc., so con- 
siderable interest will be directed toward under- 

standing how it might perform these functions. 
Accordingly, the initial configuration and the 
protocol followed by the operating system will be 
of crucial importance. 

In each design the operating supervisor is 
the initial subject in the system together with 

its "service objects," i.e., library files, etc. 
Thus each of the following designs have as ini- 
tial configurations 

s 

where s is the operating system supervisor and the 
objects are the "service objects." Notice that no 
edges are incoming to s, so by our theorems none 
will ever be introduced by remark 2.3a and so no 

user will be able to steal from the supervisor. 
Normally, a user x will be described by the 

protection subgraph 

x 

where x is the user and the objects are files. To 

create a subprocess y to operate on two files, ap- 
ply the operations 

x creates (tg to) new subject y 
x grants (t to a) to y 
x grants (t to b) to y 

which are shown graphically 

x x 

a b c y ~ ~ "a t/~ 

A second general user form~h~vable in the 
model are the project users, used, for example, 
by a group jointly writing a compiler. Here x is 

the project leader (created by the system) while 
y and z are project workers (created by the pro- 
ject leader) and the graphical representation is 

x 

t g  

t tg  \tg 
where y and z have created their own files, as 
does x. 

Notice that the project supervisor (x) is al- 
lowed to acquire rights to the workers (y,z) with- 
out their knowledge. Although x can "steal" ob- 

jects from y (with our definition of "can steal") 
this may be permitted as a justifiable access, 
since the file was created on the supervisor's 
behalf. If, in addition, the workers' files are 

to be generally available, then the project leader 
can grant take rights to the individual workers 
resulting in 

x 

With a take, y can access z's files and vice versa 
Other general user structures can obviously be en- 

visioned, e.g., instructor - teaching assistant - 
students, and the reader is invited to design them 

4.2 Design 1 - Operating System As Communications 
Agent 

In this design the supervisor communicates 

with the systems users by means of an object 
(thought of, possibly, as a buffer). The users 
communicate with one another by requesting the 
operating system supervisor to act as intermediary. 

The protocol for introducing a new user x to 
the system is: 

i. s creates (g to) new subject x 
2. s creates (tg to) new object b 
3. s grants (tg to b) to x 
4. s removes (g to) x. 

Graphically, a system with one user, x, can have 
a new user x' added as follows: 

1 

s 

! 

t g ~ ~ S t g / t g  b ~ tg 
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3 

F- 
4 

g k\tg 
\ 

QX ' ~b ' 

x 

6 -~ -~D b , 

x 

Notice that the user must trust the supervisor not 
to perform step (i) with grant and take and then 

to retain the take right since this would enable 
the supervisor to take anything created by the 
user. But if the user requests an audit from the 

protection system as its first act of business, it 
can be verified that no such right exists. Also, 

no arrows are incoming to the user so it can es- 

tablish a subsystem with the same features as the 
overall system -- i.e., the user acts as super- 
visor to its subordinates. 

Given the configuration* 

s 

b/ 
x ty 

/tg 
C C' 

*The service objects have been elided. 

x can be given rights to c' using the following 
protocol. 

i. x creates (tg to) new object d 
2. x grants (tg to d) to b 

3. s takes (tg to d) from b 
4. s grants (tg to d) to b' 
5. s removes (tg to) d 

6. x' takes (tg to d) from b' 
7. x' grants (t to c') to d 

8. x takes (t to c') from d 

Here d acts as a receptical for the data. 
In step 5 the operating system yields its 

right to possibly taking the data and prior to 
step 7, a paranoid x' could request an audit to 
verify that s yields its rights and that the 

others have followed the protocol. 

Whether or not this design is adequate is de- 
pendent on the system's requirements -- a question 

that cannot be answered here. However, it should 
be noted that with the supervisor as intermediary 

there could be a lot of traffic. Thus, in an ef- 

fort to reduce this, a second design is considered. 

4.3 Design 2 - No Agent 

Here the operating system supervisor sets up 

a buffer (such as b in Design i) between each user 
pair. Then the sharing responsibilities are 
placed on the users rather than ~he supervisor. 

In addition, the supervisor must retain grant 

rights over all of the users in order to establish 
the communication. 

The protocol for introducing new users as- 

suming Xl,...,x n already exists is: 

i. s creates (g to) new subject y 

2. s creates (tg to) new object b 1 

3. s grants (tg to b I) to y 

4. s grants (tg to b I) to x 1 

5. s removes (tg to) b I 

k+2. s creates (tg to) new object b 
n 

k+3. s grants (tg to bn) to y 

k+4. s grants (tg to b ) to x 
n n 

k+5. s removes (tg to) b 
n 

The following configuration results when y is 

added and x I and x 2 exist. 

g 

Communication among users is a simple task and is 
left as an exercise. 

The design may reduce the variable cost by 
eliminating communication traffic, but it raises 

the supervisor's overhead of joining a new user to 
the system to be proportional to the number of 

users presently in the system. Moreover, the pro- 

tection system is swamped with information. If 
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modest sharing among processes is anticipated, 
Design 3 might be preferred. 

4.4 Design 3 - The Supervisor As Communications 
Linkage Agent 

The obvious solution to the shortcomings of 
Designs 1 and 2 is to combine the features -- i.e. 

the supervisor sets up communication buffers on 
demand. Thus, the supervisor's work is propor- 
tional to the number of users sharing rather than 

the amount of sharing or the number of users. 
Also, onlythose links that are needed are created 

The user creation protocol for user x is 

simply 

s creates (g to) new subject x. 

When sharing between subjects x and y is re- 
quired, the protocol for the supervisor is 

i. s creates (tg to) new object b 
-- this is the buffer 

2. s grants (tg to b) to x 

3. s grants (tg to b) to y 
4. s removes (tg to) b. 

A sample configuration among four users with two 
of them sharing might be: 

s 

The communication protocol for the users is obvi- 

ous. Notice also that the users might request an 

audit once the object b has been created. More- 
over, in this scheme (and in the other designs as 

well) any user can decide to isolate himself from 

others with whom he has been communicating simply 
by performing a remove. But by (2.3b), he does so 

in Design 1 at the risk of perpetual isolation. 

4.5 Summary 

The point to be emphasized is that the formal 
Take-Grant Model provides a means of guiding the 
synthesis by permitting informed selection among 

a multitude of choices. For example, in the fore- 
going designs the operating system supervisor never 
allows a user that it creates to have an incoming 
edge labeled by t since this would allow the poten- 
tial of having rights taken without the user's 
knowledge. Should a user decide that it desires 
such rights over its own subsystems (i.e., the 
ability to steal), then it can create them in this 

manner. If it is less interventionist than that 
it could create subsystems after designs 1-3. In 
any case, the fact that the system had been ana- 

lyzed and characterized enables everyone to know 
the potential consequences of their actions. More 
specifically, the objectives lists in 3.1-3.3 can 

be solved in these systems. 

~5. Discussion and suggested Future Research 

In summary, the Take-Grant Model has been 
presented, analyzed and used to produce three pro- 
tection systems designs. The designs are rich 

enough to solve typical protection problems, and 

it is Probably a simple matter for a clever design- 
er to improve upon these. Theorem 3.1 states which 
rights can be given away, and which can be stolen. 
Consequently, each design derives integrity (at 

least in the abstract) from this analysis of the 

model. 
The point to be emphasized is that the ana- 

lysis of a formal model of protection can provide 

both integrity as well as guidance during synthe- 

sis. 
In the category of future research, several 

avenues can be suggested. First, the designs 1-3 
of section 4 should be evaluated in the context of 

practical protection system requirements in order 
to discover what shortcomings exist. Presuming 
that some are found, synthesis of additional sys- 

tems will be indicated. It may be that the ana- 
lysis is not yet complete and so a second search 

for any other "uninstantiated parameters" as was 
done in section 3 can be suggested. Although the 
Take-Grant Model has probably not yet been exhaus- 

ted as a source of interesting and challenging 
problems, a third research direction points to for- 
mulating a different basis protection model with 

a different set of primitive rules. (For example, 
new edge labels might be introduced to incorporate 

other capabilities.) 
A somewhat different path for future research 

is to make explicit the assumptions of designs 1-3 
(or some other design) and perhaps implement them. 

This is actually a proposal to do the explicit 
design (in the sense of the implicit vs explicit 

distinction mentioned at the beginning of section 
4) by formulating the specifications and program 
structures that actually enforce the assumptions. 
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