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Abstract:

The design of a protection system for an oper-
ating system is seen to involve satisfying the com-

veting properties of richness and integrity.
Achieving both requires the interplay of analysis
and synthesis. Using a formal model from the 1lit-
erature, three designs are developed whose integ-
rity {(with the help of the model) can be shown.

1. Introduction

In an enumeration of the many properties that
a protection system should have, two distinguish
themselves as being especially important:

richness - the property of admitting a com-
plex variety of sharing relation-
ships,

integrity - the property of guaranteeing that
the protection system cannot be
compromised even in the most
hazardous of circumstances.

Both properties are crucial - a rich system with
dubious integrity is just as unacceptable as a
system of unassailable integrity with only meager
sharing facilities.

The task of achieving both richness and in-
tegrity in a protection system is difficult be-
cause the two properties are contradictory. For
every feature, restriction, exception, etc., added
to achieve richness during the synthesis phase of
design, a complication is usually introduced into
the analysis phase of validation. Traditionally,
there seems to have been too much emphasis on syn-
thesis at the expense of analysis. This partly
explains why clever systems are so often compro-
mised. It is one purpose of this report to demon-
strate that richness and integrity can be achieved
by allowing the analysis to guide the synthesis.

That analysis should play a leadership role
may at first seem curious, since to have anything
to analyze something must first have been synthe-
sized. But this is the ad hoc view of the problem
- where each completed design is analyzed separ-—
ately, from scratch and without the benefit of
general guiding principles. What is being pro-
posed here is a more general view -- where analy-
sis establishes general properties of a whole
class of designs based on a formal model of pro-
tection while synthesis amounts to selecting among
the designs. This view will be exhibited by per-
forming both analysis and synthesis on the Take-
Grant Model [1,2]. Specifically, the analysis
(started in [1,2]) will be extended to establish

new, stronger conditions on when sharing can be
performed. Then three designs will be selected
in order to exhibit the synthesis activity.

A second objective of this report is to dem-
onstrate that a particular Model, the Take-Grant
Model [1,2], is a suitable model of capability
protection in that it admits designs that have
both richness and integrity. Most of the work to
establish integrity appears elsewhere [1,2] and
will only be mentioned here. It is not obvious
that the Take-Grant system has richness -- indeed,
from the earlier papers [1,2] one might conclude
that it is iImpoverished. It will be shown (sec-
tion 4) that the Take-Grant system has rich in-
stances.

The remainder of the paper is structured as
follows: section 2 gives an introduction to the
Take-Grant Model that parallels earlier work
(and can be skipped by those familiar with [1,2]).
Section 3 discusses the apparent short-comings of
the Take-Grant model and establishes a new condi-
tion for sharing. Section 4 presents three dif-
ferent protection system designs -- each with a
different cost assumption -- in order to exhibit
the synthesis of rich systems. The final section
is reserved for discussion and suggestions for
future research.

2. Graphical Model of the Take-Grant System

In this section the Take-Grant protection
model of [1] is described ({(with some minor modi-
fications*). 1In order to focus on the role that
the model plays in synthesizing and analyzing pro-
tection systems, the Take-Grant model will be ini-
tially presented in purely formal (though quite
intuitive) terms. The interpretation as a pro-
tection model will be postponed until section 2.3.

2.1 Constituents of the Take-Grant Model

The state of a Take-Grant Protection system
is a finite, directed, edge labeled graph called
a protection graph. There are two types of ver-
tices in the protection graph, subjects and ob-
jects. (Notationally, filled circles, ®, will

*
For those familiar with the earlier version of
the model, "t" and "g" labels are used instead
of "r" and "w", respectively. The "call" op-
eration has been dropped from consideration
and "remove" has been weakened. None of these
changes substantially effects the earlier work.

This work was supported in part by Office of Naval
Research Grant NOO014-75-C-0752.



denote subjects, unfilled circles, O, will denote
objects, and crossed circles, ®, will denote
either subjects or objects.) The labels on the

. edges are called rights and are either {t}, {g},

{t,g} where "t" and "g" are mnemonic for "take"
and "grant."t

Example 2.1: A protection graph with three
subjects and three objects.
t . g o
tg
————0
g
g
]

A protection graph G is modified to G' by
means of rewriting rules. Rules have the form
o => B. When a matches some subgraph of G, the
rule can be applied to G, producing a new graph
G' ( the operation of applying a rule r is written

clag".
X

There are four rewriting rules in the Take-~
Grant Model:

Take: Let x, y, and z be three distinct vertices
in a protection graph G such that x is a
subject. Let there be an edge from x to y
labeled y such that "t" € y, and an edge
from y to z labeled o.tt Then the take rule
defines a new graph G' by adding an edge to
the protection graph from x to z labeled a.
Graphically,

o—Lt so—2 e o
X y z X z
The rule can be read: "x takes (o to z)

from y.”

Grant: Let X, y, and z be three distinct vertices
in a protection graph G such that x is a
subject. Let there be an edge from x to y
labeled y such that "g" € y, and an edge
from x to z labeled a. The grant rule de-
fines a new graph G' by adding an edge from
y to z labeled a. Graphically,

a a
[+]
m - g
y Y z

The rule can be read: "x grants (o to z)
to y."

‘Create: Let x be any subject vertex in a protec-—
tion graph G and let a be a subset of
rights. Create defines a new graph G' by

adding a new vertex n to the graph and an

edge from x to n labeled a. Graphically,
a
r— @
; = X 8-

The rule can be read:

subject "
new {object } n.

"x creates (o to)

T We will generally elide the braces around sets.

fTIn the rules, o is a variable representing any

of the three possible labels, t, g, and tg.
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Remove: Let x and y be any distinct vertices in a
protection graph G such that x is a sub-
ject. Let there be an edge from x to y
labeled y, and let a be any subset of
rights. Then remove defines a new graph
G' by deleting the o labels from y. If

Y becomes empty as a result, the edge

itself is deleted. Graphically,
-G

.—————JL———>® 0———JL—————>®

X Yy = x Y

The rule can be read:
y.Il

"x removes (o to)

Notice that in the case of take and grant if the
edge which is to be added already exists, the label

a is simply unioned with the label presently as-
signed to the edge.

Example 2.2: Let G be the protection graph

Y
% N z
tg t
9
[ 4
w

then the four rules can be exhibited* as

follows:
———_ t
— —
// Yy \\a
X zZ
G — O >®
t t
take g

gl

w

x takes (t to z) from y;

X >y >.z
¢ b— g At
grant s
Ve
g e
Ve
7
7
[ 4
x grants (tg to y) to w;
Y
G — e >0 >e”
~ tg t
create \\
g \\\\
g ~
° o
w n

x creates (g to) new object n;

The dashed lines have no special meaning, they
are only a visual aid to indicate the added
edge.



X 2
[ o >C >
¢ | tg t
remove
®
w

x removes (g to) w.

2.2 Properties of Protection Graphs

The primitive facilities provided by the model

are uncomplicated, but their interactions are un-
expectedly complex. Accordingly, the analysis of
the model will be accomplished in two steps.
to be presented is a statement of the sharing rela-
tionships realizable in graphs containing only sub-
jects (2.2.1). Then, the sharing relationships
realizable in a general graph can be stated in
terms of "subject islands" (2.2.2).

2.2.1 Acquiring Rights in Subject-Only Graphs

Two vertices, p and g, are said to be connec-
ted if there is a path between them without regard
to directionality. The vertices p and q are sub-
ject-connected if they are connected by a path
whose vertices are only subjects. If o is a label

and p and q are vertices in a protection graph G0

then p can o g means that there exists a sequence

of graphs GO,Gl,...,Gn each derived from its pred-

ecessor by one of the four rules (i.e.,
GOI— Gl|— G2 ... I"'Gn) and in Gn there is an

edge from p to g with label a.

Theorem 2.1: [2) Let p, g and r be subject ver-
tices in a protection graph such that there is an
edge from r to g labeled a. Then p can a g if p
and g are subject-connected.

The proof of (a somewhat stronger version of)
this theorem is given in [2].
easily be misinterpreted, so any discussion of the
result is postponed to the next section. For the
present, an example may help to suggest some of the
unexpected consequences of the theorem.

u
Po—-———>o<—-—o<——t—-—-oq}-— Pg— >o<—e<
g
It
r

u v
Pe, >0< . d
t g tg
e
Ve t
s
///
e — )
tg r
r grants (t to g) ton
u v
Pe >@< o <
t g ? tg
!
tgl t t
l
n tg g

n takes (tg to v) from gq

First

The theorem can very
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i L
// ~
/ t ~N
/ ~N
u v 3
P"___________> < L ] 4
t g tg
tg t
<
n tg r
p takes (t to q) from u. ]

2.2.2 Acquiring Rights for the Subject-Object
Case

Complex as the example from the last section
may appear, it only involves subjects -- the easy
case! Objects create further complications to be
dealt with in this section. (This section may be
skipped on the first reading.)

A block in a protection graph G is any max-
imal subject-connected subgraph. Let p and q be

subjects and xl,...,xn (n > 1) be objects such
that
(2.1) p directly connected to %,
i o 1l <1ic<n-1
xi directly connected t xi+l
x directly connected to q,
then p,xl,xz,...,x ,d is a path. With each such
n
path associate a word over the alphabet

> > “« <
{trg,t:g}
where letters correspond to edge labels in the ob-

t :
vious way, €.g., O———————>0 is represented by

t oot oL o 6 is a path

> >« > > >« >
associated with the two words t t g t and t t g g.

Let E be the union of the regular languages
defined by

>
t, and O—

Tt

< < +

t(t)

(2.2)



where A+ = AA* for any set A. A bridge between
two blocks exists if from some subject p in one
block there is a path with associated word in E
to subject g in the other block.

Theorem 2.2: [1] Let G be a protection graph, p, g
and r subjects such that there is an edge from r to
g with label a. Then p can a g if and only if the
there exists a sequence of blocks Bl""’Bk with p
in B1 and g in Bk and for i=1,...,k-1 there is a
bridge from Bi to Bi+l'
The proof of this theorem is also found in
[1]. Notice that if the protection graph only con-
tains subjects (and thus k=1), then Theorem 2.2
strengthens Theorem 2.1 to be "if and only if."

Example 2.4: Let a protection graph G have
the schematic form of figure 2.1, where A and

Figure 2.1:

A protection graph with two
blocks, A and B.

B are blocks, i.e., maximal subject-connected
subgraphs. A path between p and q is shown,
and since its associated word is in the "last"

> > > <

component set of E, (i.e., tt t gt ¢

> e« * -

(t) g(t) ), the path is a bridge. By the
theorem, p can t q as the following rule ap-
plications indicate:

t‘—\
—~77 >
G ’__ P._t_>§()__._t_.>g;>o<_L0'2___t._.<_t_:..r
1 2 *3 *4
r takes (t to x4) from gq
g ———
P ~~

H »

X

Ve N
.—t—->C t >0 t >O‘: g <—t—.< €
*1 2 X3 X4 a

r takes (g to x3) from x4
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p takes

{t to x2) from x

1
p takes (t to x3) from x2

p takes (t to q) from x

3°

2.3 Interpretation of the Take-Grant Model

So far in this section, the only indication
that the Take-Grant model is intended for use in
studying protection has been some suggestive vocab-
ulary. The objective now is to relate the graph-
theoretic development to protection.

It is assumed that the protection system
(which is to be modeled by the Take-~Grant model)
is a logically separate entity from the operating
system "supervisor" (and thus the supervisor is
subject to its limitations like any other pro-
cess.)* In particular, the independence of the
protection system allows the user to query the
system himself for an audit to verify that certain
protection conditions hold. The protection graph
is a description of the currently extant protec-
tion relationships. Thus, the protection relation-
ships among systems entities can be changed only
by the four rules. The subjects are generally
thought to be "user processes"” or components that
are "active" from a protection point of view,
while the objects are thought of as files or pro-
cesses "known" to be secure. When a subject
"applies" a rule (notice that only subjects can
"apply" the rules) it is requesting a modification
of the protection state. Take causes a user to
acquire a new right over some systems entity
while grant gives some right away. Create enables
new processes and files to have their protection
configuration added to the system structure while
remove eliminates rights.

There are several important characteristics
that should be noted about the rules of the model.

(2.3) a. Take and grant do not create any new
rights -- they merely disseminate

existing rights.

b. Once all rights to a subject or object
have been removed they can never be
restored.

*
Here operating system is the totality of the

non-user programs while "supervisor" refers to
the monitor program.



c. Rights once granted away can never be
recovered, i.e., they can be distri-
buted by the grantee without consulta-
tion with the grantor.

Finally, it is significant that it can be ef-
ficiently determined whether or not p can a g. In
contrast to [3] where the "safety question" is
either undecidable or prohibitively expensive,
there is a linear time algorithm to decide if
pcan o q [1], i.e., to determine if the conditions
of Theorem 2.2 are satisfied. Thus audits can be
efficiently performed.

3. Evaluation of the Take-Grant Model

In the last section the Take-Grant model was
introduced in purely formal terms and the constit-
uent parts of the model were correlated with pro-
tection systems components (e.g., subject vertices
represent user processes). What has not been done
is to interpret the theorems from the protection
viewpoint. That is the first undertaking of this
section. After that, we discuss why the model ap-
pears to provide such meager facilities. Finally,
conditions are set forth that permit richer sharing
relationships.

3.1 What Does the Take-Grant Model Allow?

Consider the protection state schematically
shown in figure 3.1 where the region represents
the totality of all subjects and objects. Sub-

Schematic Protection State

Figure 3.1:

jects A and B are to be thought of as users while
objects w, x, y, and z are thought of as their
private files.

Given the following list of objectives, The-
orem 2.2 can be used* to specify the needed re-
quirements to achieve these objectives and to in-
fer the potential consequences.

(3.1) A wants to prevent any subject from get-
ting rights to w. 1In order to achieve
this, A either must not be connected to
any subject or else if it is connected it
must be connected by a path with associ-
ated word not in E. One consequence of
such a relationship is that A cannot share
with anyone else if it is so isolated.

Apparently, protection prevents sharing.

Our use of Theorem 2.2 in (3.1-3.3) requires that
the letter "g" in the statement of the theorem
correspond to a file, however, it is required by
the theorem that "gq" be a subject. So, as stated
Theorem 2.2 does not apply. The reader can
easily prove, however, that "g" may be either a
subject or an object in the theorem, and hence
our conclusions here are valid.
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A wants to have access to B's file y. A
must be subject-connected to B (or connec-
ted by a path with associated word in E).
If A and B are so connected then B can ac-
quire rights to A's files w and x. It
seems that sharing forfeits protection.

(3.2)

A wants to share its file w with B and
also to prevent B (or any other subject)
from acquiring rights to x. If B can tg
w then B can tg x. Thus, the only way
that A can protect x is to remove its
rights to x. But by observation (2.3b)

A can never reacquire the rights to x! It
appears as though rights cannot be selec-
tively protected.

(3.3)

3.2 A Postmortem

Theorem 2.2 provides an exact characteriza-
tion as to when a subject can acquire a right in
the Take-Grant Model. When the characterization
is applied to solve some typical protection prob-
lems (3.1-3.3), however, the model appears to be
disappointingly weak. But appearances can be de-
ceiving. So, before dismissing the model as ana-
lyzable but so poorly endowed with sharing facil-
ities as to be useless, it is prudent to review
the model and theorem checking that each feature
is realistic and correct.

Our review has exposed two characteristics of
the model worthy of revision -~ the reader may
discover others. In particular, the model per-
mits two parameters to vary arbitrarily which in
reality are far more constrained. Moreover, we
will find that constraining these parameters en-

riches the model.

The first parameter that is underconstrained
is the protection graph G in Theorem 2.2. Recall
from section 2.2.2 that the Theorem states:

"Let G be a protection graph....

This permits the protection configuration to be
chosen arbitrarily. But in reality, the protec-
tion state of an operating system, which the graph
G is supposed to model, will probably be derived
from a specific initial state by a certain set of
sharing protocols. For example, the protection
state at system initialization time may only in-
clude the supervisor (probably a subject) and

some service files and routines (probably objects)
that the supervisor has tg rights to. Further-
more, the supervisor is likely to create new users
(new subjects) by means of a fixed protocol, the
compilers and editor will create files by fixed
protocols, etc. Hence, the protection state
will not be an arbitrary graph even if a particu-
lar user is permitted unlimited freedom to apply
protection rules. (Section 4 is devoted to formu-
lating a useful set of creation and sharing proto-
cols.)

The second, and in our opinion the most im-
portant, underconstrained parameter of the model
is found in the definition of p can a g. Recall
(section 2.2.1) that p can a g means that

there exists a sequence of graphs
GO,Gl,...,Gn each derived from its

predecessor by one of the four rules
and in Gn there is an edge from p to g

with label a.

An example will help to distinguish between the



provisions of this definition and the requirements
of statements such as (3.1-3.3). Consider the

graphs
t
t
(3.4) S q b
and
(3.5) o—5 30— F eI o
p s q r

In both cases p can g ¢, since in (3.4)

(3.6) p takes (t to r) from s

p takes (g to g) from r
is all that is required and in (3.5) the sequence

(3.7) creates (tg to) subject n
grants (g to q) ton
grants (t to n) to g
takes (t to q) from s
takes (t to n) from g

takes (g to q) from n

oo R RN

defines the appropriate graph.

Let us call a subject an
if that subject corresponds to the vertex "x" in
the rule definition of section 2.1. Thus, in the
second example r initiates the first three rules
and p initiates the second three.

The notable distinction between (32.6) and
(3.7) (besides length) is that r is not an initia-
tor in (3.6) but it is in (3.7). Now, suppose r
wishes to protect the g right to g. In (3.4) it
cannot prevent p from acquiring the right since p
can initiate the needed action without r's assis~
tance. But in (3.5) if r never initiates a rule
then no matter what rules p, q, and s initiate, p
can never acquire the g right to g. The conclusion
is that p can be given g to g in either case; p can
© steal g to g in only the first case (3.4).
) The distinction, then, is between the possi-

bility of a right being given away and the possi-

bility of a right being stolen. Theorem 2.2 only
addresses giving rights assuming everyone to be in-
finitely generous. Since it seems realistic to
assume that users will not "knowingly"* give away
what they wish to protect, a right that cannot be
stolen is protected. In the last part of this sec~
tion a theorem similar to Theorem 2.2 details the
conditions under which p can steal a to q.

initiator of a rule

3.3 Stealing in the Take-Grant Model

The distinction to be made is between the
case where p must acquire a right with the assis-
tance of one of the "owners" of the right and the
case where p is able to acquire that right without
any owner's assistance. If the latter case applies
p will be able to "steal" the right.

More precisely,t let G be a protection graph,

The word "knowingly" is used here only in the
limited sense that by requesting an audit, the
user can find (and thus "know") whether the ini-
tiation of a particular rule will materially con-
tribute to a theft.

The notation p-e*q (resp. p—7u>q) in G means
that there is (resp., is not) an edge in G from
P to g labeled a. The "in G" will be elided
when it is clear from context.
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P: g be subjects and o a label such that pP—#—a>q in
G. Then p can steal a to q in G if there exists a
sequence of graphs
Gl
T Gl‘; GZ’; '; Gn
1 2 3 n

such that
(i) p-osg in Gn
and

(ii) for all i, x5 initiates rule r, implies
i

xiﬁF—u+q in G.

Thus, p can steal o to g if it doesn't already
have @ rights to q, if p can a g (i) and if it
can do so without any owner of the a right to gq
initiating any rules, i.e., cooperating with the
dissemination of its right. The intuition we seek
is if p can a g but p cannot steal o to g then the
o right to g must necessarily be protected and p
can only acquire it as a gift.

The circumstances under which rights can be
stolen may now be characterized.*

Theorem 3.1: Let G be a protection graph, p, g
are subjects and o is an edge label. Then p can
steal a to q if and only if

(i) p can a g

and
(ii) there exist subjects r and s such that
s-trr and r-o>q.
Proof: (=>) Suppose p can steal a to g, then by

definition of "can steal,"” p can a q, so condition
(i) is satisfied. Moreover, by definition of
p can o ¢, there is some r such that r-o>g. So
suppose (for purposes of contradiction) that for
all r such that r-o*q that there is no s such that
sTt’r.

Let GF- G, ...}- G  be a sequence that

r lr r n
1 2

implements p can steal a to g. Let i be the smal-
lest integer such that some vertex w receives the
o right to q (i.e., this is the first graph in
which the o right to g is disseminated -- this
exists by definition of “can steal"). Thus, in
Gi—l the situation is

® .____L.__—-..> 9

w r q

and in Gi the situation is

2]
[

w r q
By examining the rules, it is clear that r, is

either "take" and w corresponds to "x" in the rule
definition, or_"grant" and r corresponds to "x" in

* as usual, we treat only the case where the
“agents" of the theorem are subjects. The cases
where some nonempty subset of p, q, r and s are
objects has not been addressed.



the rule definition. The second case is elimi-
nated since r is the initiator which isn't allowed
in a "steal." So rg must be a take initiated by w

and hence w must have take rights to r. By Theo-
rem 2.2, however, for w to get t rights to r, some
subject must have t rights to r, contradicting the
assumption. )

(<=) Suppose that p can o g, s-t>r and r-o>q.

. If p can o q without r initiating a rule, then
the theorem is proved. So suppose that p can o g
and r initiates some rules. We construct a sur-
rogate subject, a new subject n, identical to r.
Then the sequence of rule applications implemen-
ting p can a g can be rewritten with n replacing
all occurrences of r.

The process to be defined will begin with a
graph such as that schematically shown in figure
3.2 and will produce the graph schematically
shown in figure 3.3.

Figure 3.2: Given configuration.

Figure 3.3: Constructed configuration.

Step 1. (Create surrogate)

s creates (tg to) new subject n

Step 2. (Give surrogate Bl type edge)

s takes (B1 to ul) from r

s grants (B1 to ul) ton V =B >uy

Step 3. (Give surrogate 82 type edges)

Case a. 62 =g
u, creates (tg to) new subject n'

u, grants

s takes (g to n') from r
s grants (g to n) to n'’

u, takes (g to n) from n'

(g ton') tor
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Case b. B, = ﬁ Aa=t

2
q creates {tg to) new subject n'
u2 takes (t to q) from r

u, takes (t to n') to q

s takes (t to q) from r,
s takes (g to n') from g
s grants (t to n) to n'’
u, takes (t to n) from n'

2
Case c. 62=tAc¢=g

u, creates (tg to) new subject n'
u, takes (g to q) from r
u, grants (g to n') to g
s takes (g to gq) from r
s grants (t to n) to gq
q grants (t to n) to n'
u, takes (t to n) from n'

Step 4. (Give surrogate 83 type edges)

By Theorem 2.2, the only way that ob-
jects such as u,; can participate in

"p can o gq" transformation is if they
have associated word in E (see section
2.2.2). Let v be a subject such that
there is a path from v to r with assoc-
iated word w in E. Then
. > +
(i) w e T
L. >
or (ii) w e (t) g(t)
and in the second case the "starred" set
is empty. Thus, V can,by a sequence of
"takes,' get either v-t>r (i) or
v=g*r (ii) and we apply step 3, where now
u, =v. O
Since the conditions characterizing p can a g
can be checked in linear time, an immediate con-
sequence of the theorem is:

Corollary 3.2: There is a linear time algorithm
to decide if p can steal o to q.

4. The Synthesis of the Take-Grant Systems

The analysis of the model is now completed
and it is time to "synthesize" some systems. As
indicated in the introduction, our view of the
synthesis activity is that of the selection of a
particular subset of protection states definable
in the model. The subset will include the protec-
tion configurations achievable in a particular
system. The analysis enables us to make an in-
formed choice as to which configurations to in-
clude and which to exclude, i.e., we can determine
what sharing can be achieved. This selection pro-
cess is exhibited by specification of initial con-
figurations (4.1) and by three protection systems
designs (4.2-4.4). The designs represent only a
sampling of the potential protection structures.
They have been selected to illustrate how the
model can be used to achieve goals in addition to
simple security -~ in this case achieving effi-
ciency by balancing the number of users sharing
against the total amount of sharing taking place.

It may be helpful before presenting the
designs to underscore the distinction between a
model and a design. A model provides a means of
specifying protection system states, a means of



specifying state changes, and a means of stating
and proving theorems about these states and state
changes. The model does not provide a design. A
"design" of a protection system -- the structures
and operations that the program must effect --
will be embodied in the assumptions made in the
model. Thus, a design only exists implicitly in
the present development. Making it explicit re-
quires writing system specifications that realize
and/or enforce the assumptions. Thus, a designer
must first formulate a suitable abstract model of
protection, such as the Take-Grant Model, and then
convert the assumptions of the model into explicit
specifications.

4.1 Initial State and User Processes

As indicated in the last section, the opera-
ting system supervisor is distinct from the pro~
tection system and is thus treated just like any
other subject in the system. Of course, it does
have a special role of joining new users to the
system, managing library programs, etc., so con~
siderable interest will be directed toward under-
standing how it might perform these functions.
Accordingly, the initial configuration and the
protocol followed by the operating system will be
of crucial importance.

In each design the operating supervisor is
the initial subject in the system together with
its "service objects," i.e., library files, etc.
Thus each of the following designs have as ini-
tial configurations

tg tg
s

where s is the operating system supervisor and the
objects are the "service objects." ©Notice that no
edges are incoming to s, so by our theorems none
will ever be introduced by remark 2.3a and so no
user will be able to steal from the supervisor.

Normally, a user x will be described by the
protection subgraph

a B e

where x is the user and the objects are files. To
create a subprocess y to operate on two files, ap-
ply the operations

X creates (tg to) new subject y
X grants (t to a) to y
x grants (t to b) to y

which are shown graphically

X X

e ™
A second general user form achievable in the
model are the project users, used, for example,
by a group jointly writing a compiler. Here x is
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the project leader (created by the system) while
y and z are project workers (created by the pro-
ject leader) and the graphical representation is

X

where y and z have created their own files, as
does x.

Notice that the project supervisor (x) is al-
lowed to acquire rights to the workers (y,z) with-
out thejir knowledge. BAlthough x can "steal" ob-
jects from y (with our definition of "can steal")
this may be permitted as a justifiable access,
since the file was created on the supervisor's
behalf. If, in addition, the workers' files are
to be generally available, then the project leader
can grant take rights to the individual workers
resulting in

With a take, y can access z's files and vice versa.
Other general user structures can obviously be en-
visioned, e.g., instructor - teaching assistant -

students, and the reader is invited to design them.

4.2 Design 1 - Operating System As Communications
Agent

In this design the supervisor communicates
with the systems users by means of an object
(thought of, possibly, as a buffer). The users
communicate with one another by requesting the
operating system supervisor to act as intermediary.

The protocol for introducing a new user x to
the system is:

1. s creates (g to) new subject x
2. s creates (tg to) new object b
3. s grants (tg to b) to x

4. s removes (g to) x.

Graphically, a system with one user, x, can have
a new user x' added as follows:

—
tg 1
tg tg
s
tg
b
tg
X




ol

ol

T

Notice that the user must trust the supervisor not
to perform step (1) with grant and take and then
to retain the take right since this would enable
the supervisor to take anything created by the
user. But if the user requests an audit from the
protection system as its first act of business, it
can be verified that no such right exists. Also,
no arrows are incoming to the user so it can es-
tablish a subsystem with the same features as the
overall system -- i.e., the user acts as super-
visor to its subordinates.

Given the configuration*

s
tg, tg

b b'

tg, tg

X X

tg tg

c c

*
The service objects have been elided.
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X can be given rights to c¢' using the following
protocol,

1. x creates (tg to) new object 4
2. x grants (tg to d) to b

3. s takes (tg to d) from b

4. s grants (tg to d) to b’

5. s removes (tg to) d

6. x' takes (tg to d) from b'
7. x' grants (t to c') to d
8. x takes (t to c¢') from 4

Here d acts as a receptical for the data.

In step 5 the operating system yields its
right to possibly taking the data and prior to
step 7, a paranoid x' could request an audit to
verify that s yields its rights and that the
others have followed the protocol.

Whether or not this design is adequate is de-
pendent on the system's requirements -- a question
that cannot be answered here. However, it should
be noted that with the supervisor as intermediary
there could be a lot of traffic. Thus, in an ef-
fort to reduce this, a second design is considered.

4.3 Design 2 - No Agent

Here the operating system supervisor sets up
a buffer (such as b in Design 1) between each user
pair. Then the sharing responsibilities are
placed on the users rather than the supervisor.
In addition, the supervisor must retain grant
rights over all of the users in order to establish
the communication.

The protocol for introducing new users as-

suming xl,...,xn already exists is:

1. s creates (g to) new subject y
2. s creates (tg to) new object bl
3. s grants (tg to bl) to y
4. s grants (tg to bl) to X
5. s removes (tg to) bl

k+2. ; éréates (tg to) new object bn

k+3. s grants (tg to bn) to y

k+4. s grants (tg to bn) to xn

k+5. s removes (tg to) bn

The following configuration results when y is

1 and x2

added and x exist.

Communication among users is a simple task and is
left as an exercise.

The design may reduce the variable cost by
eliminating communication traffic, but it raises
the supervisor's overhead of joining a new user to
the system to be proportional to the number of
users presently in the system. Moreover, the pro-
tection system is swamped with information. If



modest sharing among processes is anticipated,
Pesign 3 might be preferred.

4.4 Design 3 - The Supervisor As Communications
Linkage Agent

The obvious solution to the shortcomings of
Designs 1 and 2 is to combine the features -- i.e..
the supervisor sets up communication buffers on
demand. Thus, the supervisor's work is propor-
tional to the number of users sharing rather than
the amount of sharing or the number of users.
Also, only.those links that are needed are created

The user creation protocol for user X is
simply

s creates (g to) new subject x.

When sharing between subjects x and y is re-
quired, the protocol for the supervisor is

1. s creates (tg to) new object b
-- this is the buffer

2. s grants (tg to b) to x

3. s grants (tg to b) toy

4. s removes (tg to) b.

A sample configuration among four users with two
of them sharing might be:

The communication protocol for the users is obvi-
ous. Notice also that the users might request an
audit once the cbject b has been created. More-
over, in this scheme (and in the other designs as
well) any user can decide to isolate himself from
" others with whom he has been communicating simply
by performing a remove. But by (2.3b), he does so
inDesign 1 at the risk of perpetual isolation.

4.5 Summary

The point to be emphasized is that the formal
Take~Grant Model provides a means of guiding the
synthesis by permitting informed selection among
a multitude of choices. For example, in the fore-
going designs the operating system supervisor never
allows a user that it creates to have an incoming
edge labeled by t since this would allow the poten-
tial of having rights taken without the user's

© knowledge. Should a user decide that it desires
such rights over its own subsystems (i.e., the
ability to steal), then it can create them in this
manner. If it is less interventionist than that
it could create subsystems after designs 1-3. 1In
any case, the fact that the system had been ana-
lyzed and characterized enables everyone to know
the potential consequences of their actions. More
specifically, the objectives lists in 3.1-3.3 can
be solved in these systems.

5. Dpiscussion and Suggested Future Research

In summary, the Take-Grant Model has been
presented, analyzed and used to produce three pro-
. tection systems designs. The designs are rich
enough to solve typical protection problems, and

it is probably a simple matter for a clever design-
er to improve upon these. Theorem 3.1 states which
rights can be given away, and which can be stolen.
Consequently, each design derives integrity (at
least in the abstract) from this analysis of the
model.

The point to be emphasized is that the ana-
lysis of a formal model of protection can provide
both integrity as well as guidance during synthe-
sis.

In the category of future research, several
avenues can be suggested. First, the designs 1-3
of section 4 should be evaluated in the context of
practical protection system requirements in order
to discover what shortcomings exist. Presuming
that some are found, synthesis of additional sys-—
tems will be indicated. It may be that the ana-
lysis is not yet complete and so a second search
for any other "uninstantiated parameters" as was
done in section 3 can be suggested. Although the
Take-Grant Model has probably not yet been exhaus-
ted as a source of interesting and challenging
problems, a third research direction points to for-
mulating a different basis protection model with
a different set of primitive rules. (For example,
new edge labels might be introduced to incorporate
other capabilities.)

A somewhat different path for future research
is to make explicit the assumptions of designs 1-3
(or some other design) and perhaps implement them.
This is actually a proposal to do the explicit
design (in the sense of the implicit vs explicit
distinction mentioned at the beginning of section
4) by formulating the specifications and program
structures that actually enforce the assumptions.
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